
CS 5301: Software Engineering Tools Lab
Report

CMakeQt: Cross-Platform
Build System Automation

Submitted by

Rohit Yadav (07020003)
IDD Part V

DEPARTMENT OF COMPUTER ENGINEERING
IT-BHU, VARANASI-221005

NOVEMBER 2011

DEPARTMENT OF COMPUTER ENGINEERING
INSTITUTE OF TECHNOLOGY
BANARAS HINDU UNIVERSITY
VARANASI-221005, (U.P.) INDIA

CERTIFICATE

This is to certify that Rohit Yadav (07020003) and Rahul Jain
(07020007), IDD Part V, Department of Computer Engineering, Institute
of Technology, Banaras Hindu University, havr worked on their project
report for Software Engineering Tools Lab (CS 5301) entitled “CMakeQt:
Cross-Platform Build System Automation” under my direct supervision
during the period July 2011 – November 2011, the findings of which have
been incorporated in this report. He has worked diligently, meticulously
and methodically. The report has been found satisfactory and is approved
for submission.

Dr. Vinayak Srivastava,
CS 5301 - Software Engineering Tools Lab,
Department of Computer Engineering,
Institute of Technology,
Banaras Hindu University.

Table of Contents
1. Introduction..4
2. Build Automation...5

2.1 Makefiles...5
2.2 CMake..6

3. Cross-platform Build Automation ...9
4. CMakeQt..10

4.1 Source Tree..10
4.2 Build Process...11
4.3 Testing and Conclusions..13

References..14

1. Introduction

Historically, developers used build automation to call compilers and
linkers from inside a build script versus attempting to make the compiler
calls from the command line. It is simple to use the command line to pass a
single source module to a compiler and then to a linker to create the final
deployable object. However, when attempting to compile and link many
source code modules, in a particular order, using the command line process
is not a reasonable solution. The make scripting language offered a better
alternative. It allowed a build script to be written to call in a series, the
needed compile and link steps to build a software application. [2]

GNU Make [3] was one of the first and most successful build
automation tool still used today, it also offered additional features such as
"makedepend" which allowed some source code dependency management
as well as incremental build processing. This was the beginning of Build
Automation. Its primary focus was on automating the calls to the
compilers and linkers. As the build process grew more complex,
developers began adding pre and post actions around the calls to the
compilers such as a check-out from version control to the copying of
deployable objects to a test location. The term "build automation" now
includes managing the pre and post compile and link activities as well as
the compile and link activities.

This report describe an on-demand cross-platform build automation
tool called CMakeQt which uses pre-existing build automation tools such
as cmake, make etc. and exclusively provides a solution for cross-platform
software development requirements of a typical C/C++ Qt project.

2. Build Automation

Build automation [1] is the act of scripting or automating a wide
variety of tasks that software developers do in their day-to-day activities
including things like:

• compiling computer source code into binary code
• packaging binary code
• running tests
• deployment to production systems
• creating documentation and/or release notes

Build automation becomes really essential for medium to large
projects where the build process applies to hundreds, thousands or even
larger number of source files. Advantages of build system automation are
as follows:

• Improve product quality
• Accelerate the compile and link processing
• Eliminate redundant tasks
• Minimize "bad builds"
• Eliminate dependencies on key personnel
• Have history of builds and releases in order to investigate issues
• Save time and money - because of the reasons listed above.

Based on usage, build automation tools also called build systems can be
classified into following broad types:

1. On-Demand automation, such as a user running a script at the
command line

2. Scheduled automation, such as a continuous integration server
running a nightly build

3. Triggered automation, such as a continuous integration server
running a build on every commit to a version control system.

2.1 Makefiles

Makefiles are simple text files which specify the rules and steps to
derive a target program, and it is read by Make [4] which is a utility that
automatically builds executable programs and libraries from source code
by reading the makefiles. Though integrated development environments

and language-specific compiler features can also be used to manage the
build process in modern systems, Make remains widely used, especially in
Unix.

Following listing shows an example Makefile. To start this on-
demand build process, make all is run on a terminal which targets to
create the target by compiling C source files.

One specific form of build automation is the automatic generation of
Makefiles and which is also used to develop CMakeQt. This is
accomplished by tools such as GNU Automake , CMake , qmake etc.

2.2 CMake
CMake [4] [5] is a cross-platform, open-source system for managing

the build process of software using a compiler-independent method. It is
designed to support directory hierarchies and applications that depend on
multiple libraries, and for use in conjunction with native build
environments such as Make.

Advantages of using CMake for makefile [5] generation are as
follows:

• Cross-platform
• Very simple script language
• Dependency discovery is awesome: FIND_PACKAGE
• Scales very well
• Creates a project files for Makefile, Visual Studio, Kdevelop,

Eclipse, etc

• Users can use the tools they are used to

Typical build process with CMake consists of two stages. First,
standard build files are created from configuration files. Then the
platform's native build tools are used for the actual building. Following
diagram shows the build process in action:

Each build project contains a CMakeLists.txt file in every directory
that controls the build process. The CMakeLists.txt file has one or more
commands in the form COMMAND (args...), with COMMAND
representing the name of each command and args the list of arguments,
each separated by white space. While there are many built-in rules for
compiling the software libraries (static and dynamic) and executables,
there are also provisions for custom build rules. Some build dependencies
can be determined automatically. Advanced users can also create and
incorporate additional makefile generators to support their specific
compiler and OS needs.

CMake can handle in-place and out-of-place builds, enabling several
builds from the same source tree, and cross-compilation. The ability to
build a directory tree outside the source tree is a key feature, ensuring that
if a build directory is removed, the source file remains unaffected.

Another feature of CMake is the ability to generate a cache to be
used with a graphical editor, which, when CMake is run, can locate
executables, files and libraries. This information goes into the cache,
which can then be tailored before generating the native build files.

Complicated directory hierarchies and applications that rely on
several libraries are well supported by CMake. For instance, CMake is
able to accommodate a project that has multiple toolkits, or libraries that
each have multiple directories. In addition, CMake can work with projects
that require executables to be created before generating code to be
compiled for the final application. Its open-source, extensible design
allows CMake to be adapted as necessary for specific projects.

CMake can generate makefiles for many platforms and IDEs
including Unix, Windows, Mac OS X, MSVC, Cygwin, MinGW and
Xcode.

3. Cross-platform Build Automation

In desktop software development, because of diversity of popular
operating systems such as Windows, Mac OSX, Linux, BeOS, Haiku, BSD
etc.; software developers are required to develop and publish cross-
platform, or multi-platform software which is implemented and can inter-
operate on multiple computer platforms.

Cross-platform software may be divided into two types; one requires
individual building or compilation for each platform that it supports, and
the other one can be directly run on any platform without special
preparation, e.g., software written in an interpreted language or pre-
compiled portable bytecode such as Java or Python applications.

Throughout the document by cross-platform software we mean the
software which can be individually built or compiled for multiple
platforms and we focus on the top three popular platforms or OS: Linux,
Mac OSX and Windows. Most popular open source applications such as
VLC, Firefox, Chrome, Blender, GIMP, are cross-platform in the way that
they can be built on various platforms using the same source code.

While most desktop application are developed in C/C++, to solve the
problem of supporting cross-platform applications Qt was created in 1992
and is the defacto cross-platform application framework. Qt is open source
and is supported on Linux, Windows, Mac, Embedded Linux, Symbian,
MeeGo/Maemo, Windows CE, Haiku, OpenSolaris, OS/2, webOS etc. And
has a range of bindings for various languages. In our build system
automation tool we've explicitly supported C/C++ based Qt projects.

4. CMakeQt
CmakeQt is a cross-platform build automation tool and open-sourced

as a build system template which any developer who wants to develop
cross-platform desktop application can drag and drop the template, change
certain variables and paths without the hassel to understand the build
system or the build process thereby helping the developer to focus on the
project. It simply requires CMake and build-tools (make and c/c++
compiler); and has following features:

1. Cross-platform, works on Linux, Mac OSX and Windows.
2. Asthetic terminal/text-based interface, which shows highlighted build

activities and progress percentage.
3. Versioning/tagging support.
4. Automatic build tools detection to detect C/C++ compilers and Qt

libraries.
5. Translation support, automatically compiles .ts files and links to

compiled binary.
6. Cross-compilation for Windows on Linux using MINGW

(Minimalistic GNU compiler for Linux) with Win32 contribs
(precompiled Qt libraries and headers).

7. Documentation, man pages for Linux.
8. Processes application defined and dependent identifiers, icon and

media files.
9. Packaging enabled; deb/rpm for Linux, bundled App or DMG for

Mac OSX and NSIS [7] based installer for Windows.

4.1 Source Tree
The source tree can be seen in the following snapshot which lists

various files and directories in the root folder:

The cmake folder contains CMakeQt specific modules which has
rules that enable rpm/deb packaging, automatic config.h module (for use in
application to detect/set/get platform/os specific variables), rules for icon
creation and cross-compilation MINGW32 rules for Windows on Linux.
The contribs folder contains scripts to fetch Windows and Mac OSX Qt
libraries and headers that are used to link them to the built application. The
doc folder contains a simple man page template for providing application
documentation on Linux. The nsis folder contains scripts and
CMakeLists.txt file to packaging cross-compiled win32 application as a
NSIS [7] installer for Windows. The share folder contains icons, media
images and files used by the application. The src folder contains project
source files. The ts folder contains translation files and rules. The build and
win32 folder are temperary folders where building takes place for
Linux/Mac and Windows respectively.

4.2 Build Process
Each folder, except the temporary ones, contains a CMakeLists.txt

file which sets up commands and rules and add sub directories. When
cmake is evoked it recursively processes all these files and generates
makefiles which then can be simply evoked by a make command. For
example to simply build the project, one needs to create a temporary folder

(build in our example), switch to that directory and run cmake; following
snapshot of the terminal shows this process and output:

After that one simply needs to evoke make to build the target, as
shown in the following snapshot:

The compiled binaries can be found in the build/bin folder. To

package the binaries, one can evoke make package. To cross-compile for
Windows on Linux, one needs to simply specify the cross-compilation
toolchain rule:

cmake -DCMAKE_TOOLCHAIN_FILE=cmake/toolchain-win32.cmake ..

When make is run MINGW32 compiler toolchain will carry out the
build process, to create the NSIS installer for Windows one needs to evoke
make installer.

For Mac OSX, simple cmake and make commands will do the trick
and create the App/DMG file in the build/bin folder. To add/remove source
files and manupulate settings one simply needs to change variables and
paths in the CMakeLists.txt files in the root folder and in the src folder.

4.3 Testing and Conclusions
CMakeQt was successfully tested on; Ubuntu Linux 11.04 - x86_64

and i386; Mac OSX Snow Leopard i386; Windows 7 i386. The results
were satisfactory and we conclude that it can be used as a software
engineering tool for cross-platform build automation across popular
operating systems.

References
[1] Build Automation: http://en.wikipedia.org/wiki/Build_automation

[2] Matthew Doar (2005). Practical Development Environments. O'Reilly
Media. pp. 94. ISBN 978-0596007966.

[3] GNU Make. Free Software Foundation:
http://www.gnu.org/software/make/manual/make.html

[4] CMake Build System Tool, cmake.org.

[5] Pau Garcia i Quiles. Learning CMake , 2008.

[6] CmakeQt: https://github.com/rohityadav/cmakeqt/

[7] NSIS, a scriptable win32 installer/uninstaller: nsis.sourceforge.net

http://en.wikipedia.org/wiki/Build_automation
https://github.com/rohityadav/cmakeqt/
http://www.gnu.org/software/make/manual/make.html#Makefile-Names

	1. Introduction
	2. Build Automation
	2.1 Makefiles
	2.2 CMake

	3. Cross-platform Build Automation
	4. CMakeQt
	4.1 Source Tree
	4.2 Build Process
	4.3 Testing and Conclusions

	References

